					LTR				DESC	RIPTI	ON				D	ATE		1	APPR	OVED)
				. 0.45													.,			_	
epared	d in acco	ordance	e with /	\SME \	Y14.24												Ve	ndor i	tem di	rawing	l
epared	d in acco	ordance	e with /	ASME '	Y14.24												Ve	ndor i	tem di	rawing	
EV AGE	in acco	ordance	e with A	ASME '	Y14.24												Ve	ndor i	tem di	rawing	
EV AGE EV	d in acco	ordance	e with A	ASME `	Y14.24												Ve	ndor i	tem di	rawing	
EV AGE EV AGE				ASME \	Y14.24												Ve	ndor i	tem di	rawing	
EV AGE EV AGE	ATUS		REV	ASME `		2	3	4	5	6	7	8	9	10	11	12			tem di	rawing	
EV AGE EV AGE EV STA	ATUS		REV		1	2	3	4	5	6	7	8	9	10 DLA	11 LAND	12 AND	13	14		rawing	
EV AGE EV AGE EV STA	ATUS		REV		1 RED BY				5	6	7	8	C	DLA OLUN	LAND IBUS,	AND	13 MARI) 4321	14 TIME 18-399	90	rawing	
EV AGE EV AGE EV STA F PAGI	ATUS ES		REV PAGE	REPA	1 RED BY	<u> </u>			5	6			C	DLA OLUN	LAND IBUS,	AND	13 MARI	14 TIME 18-399	90	rawing	
AGE AGE V AGE F PAGI	ATUS	drawing	REV PAGE	PREPA	1 RED BY	/ Phu H. Phu H.	Nguy	en	5	6	TITI	LE	C http	DLA OLUN	LAND IBUS, w.land	AND OHIC	13 MARI 0 4321	14 TIME 18-399 ne.dla	90 mil/		
EV AGE EV AGE EV STAF PAGI	ATUS ES A	drawin	REV PAGE	PREPA	1 RED BY	/ Phu H. Phu H.	Nguye	en en	5	6	TITI MIC WIT	LE CROC	http CIRCI	DLA OLUN O://www	LAND MBUS, w.land	AND OHIC dandm	13 MARI 0 4321	14 TIME 18-399 ne.dla	90 .mil/	IT DA	
EV AGE EV AGE EV STAF PAGI	ATUS ES A	drawin	REV PAGE	PREPA	1 RED BY VED BY	Phu H.	Nguyo Nguyo S M. He	en en	5	6	TITI MIC WIT MO	LE CROC	http DIRCI ppm/	DLA OLUN :://ww	LAND MBUS, w.land	AND OHIC dandm	13 MARI 1321 Daritin	14 TIME 18-399 ne.dla	90 .mil/		
EV AGE EV AGE EV STAF PAGI	ATUS ES A	drawin	REV PAGE	REPA	1 RED BY VED BY	Phu H. Phu H.	Nguyo Nguyo s M. He	en en	5	6	TITI MIC WIT MO	LE CROC H 5 NOL	http DIRCI ppm/	DLA COLUM C://www	LAND MBUS, w.land LINE N-CH	AR, HIP R	13 MARI 1321 Daritin	14 TIME 18-399 ne.dla	90 .mil/		
EV AGE EV AGE EV STAF PAGI	ATUS ES A	drawin	REV PAGE	PREPA	1 RED BY VED BY	Phu H. Phu H.	Nguyo Nguyo s M. He	en en ess	5	6	TITI MIC WIT MO	LE CROC H 5 NOL	http DIRCI ppm/	JIT, CO OC SIL	LAND MBUS, w.land LINE N-CH	AR, HIP R	13 MARI 0 4321 paritin	14 TIME 18-399 ne.dla	90 .mil/		

REVISIONS

AMSC N/A 5962-V027-13

1. SCOPE

- 1.1 <u>Scope</u>. This drawing documents the general requirements of a high performance octal, 16-bit DAC with 5 ppm/°C on-chip reference microcircuit, with an operating temperature range of -55°C to +125°C.
- 1.2 <u>Vendor Item Drawing Administrative Control Number</u>. The manufacturer's PIN is the item of identification. The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation:

 V62/12643
 01
 X
 B

 Drawing number
 Device type (See 1.2.1)
 Case outline (See 1.2.2)
 Lead finish (See 1.2.3)

1.2.1 Device type(s).

Device type Generic Circuit function

Otal, 16-bit DAC with 5 ppm/°C on-chip reference

1.2.2 <u>Case outline(s)</u>. The case outlines are as specified herein.

 Outline letter
 Number of pins
 JEDEC PUB 95
 Package style

 X
 16
 JEDEC MO-153-AB
 Thin Shrink Small Outline Package

1.2.3 <u>Lead finishes</u>. The lead finishes are as specified below or other lead finishes as provided by the device manufacturer:

Finish designator

A Hot solder dip
B Tin-lead plate
C Gold plate
D Palladium
E Gold flash palladium
Z Other

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12643
		REV	PAGE 2

1.3 Absolute maximum ratings. 1/

V _{DD} to GND	-0.3 V to +7.0 V
Digital input voltage to GND	
V _{OUT} to GND	$-0.3 \text{ V to V}_{DD} + 0.3 \text{ V}$
V _{REFIN} /V _{REFOUT} to GND	$-0.3 \text{ V to V}_{DD} + 0.3 \text{ V}$
Operating temperature range:	-55°C to +125°C
Storage temperature range	-65°C to 150°C
Junction temperature (T _J max)	
Case outline X:	
Power dissipation	$(T_{JMAX} - T_{A})/\theta_{JA}$
θ _{JA} thermal impedance	150.4 °C/W
Reflow soldering peak temperature	
SnPb	240°C
Pb free	260°C

2. APPLICABLE DOCUMENTS

JEDEC - SOLID STATE TECHNOLOGY ASSOCIATION (JEDEC)

JEP95 - Registered and Standard Outlines for Semiconductor Devices

(Copies of these documents are available online at http://www.jedec.org or from JEDEC – Solid State Technology Association, 3103 North 10th Street, Suite 240–S, Arlington, VA 22201.)

3. REQUIREMENTS

- 3.1 <u>Marking</u>. Parts shall be permanently and legibly marked with the manufacturer's part number as shown in 6.3 herein and as follows:
 - A. Manufacturer's name, CAGE code, or logo
 - B. Pin 1 identifier
 - C. ESDS identification (optional)
- 3.2 <u>Unit container</u>. The unit container shall be marked with the manufacturer's part number and with items A and C (if applicable) above.
- 3.3 <u>Electrical characteristics</u>. The maximum and recommended operating conditions and electrical performance characteristics are as specified in 1.3 and table I herein.
 - 3.4 <u>Design, construction, and physical dimension</u>. The design, construction, and physical dimensions are as specified herein.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12643
		REV	PAGE 3

Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

3.5 Diagrams.

- 3.5.1 <u>Case outline</u>. The case outline shall be as shown in 1.2.2 and figure 1.
- 3.5.2 <u>Terminal connections</u>. The terminal connections shall be as shown in figure 2.
- 3.5.3 Functional block diagram. The functional block diagram shall be as shown in figure 3.
- 3.5.4 <u>INL External reference</u>. The <u>INL External reference</u> shall be as shown in figure 4.
- 3.5.5 <u>DNL</u>. The DNL shall be as shown in figure 5.
- 3.5.6 <u>Zero scale error and Offset error vs Temperature</u>. The Zero scale error and Offset error vs Temperature shall be as shown in figure 6.
- 3.5.7 <u>Gain error and Full scale error vs Supply voltage</u>. The Gain error and Full scale error vs Supply voltage shall be as shown in figure 7.
- 3.5.8 <u>Digital to Analog glitch impulse (negative)</u>. The Digital to Analog glitch impulse (negative) shall be as shown in figure 8.
- 3.5.9 <u>Serial write operation</u>. The serial write operation shall be as shown in figure 9.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/12643
COLUMBUS, OHIO	A	16236	
		REV	PAGE 4

TABLE I. Electrical performance characteristics. 1/

Test	Symbol	Test conditions		Limits		Unit
		<u>2</u> /	Min	Тур	Max	
Static performance <u>3</u> /						
Resolution			16			Bits
Relative accuracy		See FIGURE 4		±8	±21	LSB
Differential nonlinearity		See FIGURE 5 4/			±1	
Zero code error		All 0s loaded to DAC register, See FIGURE 6		1	14	mV
Zero code error drift				±2		μV/°C
Full scale error		All 1s loaded to DAC register, See FIGURE 7		-0.2	-1	% FSR
Gain error					±1	
Gain temperature coefficient		of FSR/°C		±2.5		ppm
Offset error				±1	±14	mV
DC Power supply rejection ratio		V _{DD} ± 10%		-80		dB
		Due to full scale output change,		10		μV
DC Crosstalk (External reference)		$R_L = 2 k\Omega$ to GND or V_{DD}				
		Due to load current change		5		μV/mA
		Due to powering down (per channel)		10		μV
		Due to full scale output change,		25		μV
DC Crosstalk (Internal reference)		$R_L = 2 k\Omega$ to GND or V_{DD}				
		Due to load current change		10		μV/mA
Output characteristics <u>5</u> /			1		1	
Output voltage range			0		V_{DD}	V
Capacity load stability		R _L = ∞		2		nF
		$R_L = 2 k\Omega$		10		
DC output impedance				0.5		Ω
Short circuit current		$V_{DD} = 5 \text{ V}$		30		mA
Power up time		Coming out of power down mode, V _{DD} = 5 V		4		μs
Reference inputs			1		1	
Reference current		$V_{REF} = V_{DD} = 5.5 \text{ V (per DAC channel)}$		40	55	μΑ
Reference input range			0		V_{DD}	V
Reference input impedance				14.6		kΩ
Reference outputs	T		T		T	
Output voltage		At ambient	1.247		1.253	V
Reference temperature coefficient <u>5</u> /				±5		ppm/°C
Reference output impedance				7.5		kΩ
Logic input <u>5</u> /	,		T		T	
Input current		All digital inputs			±3	μΑ
Input low voltage	V_{INL}	$V_{DD} = 5 \text{ V}$			0.8	V
Input high voltage	V_{INH}	$V_{DD} = 5 \text{ V}$	2			
Pin capacitance				3		pF

See footnote at end of table.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12643
		REV	PAGE 5

TABLE I. <u>Electrical performance characteristics</u> - Continued. <u>1</u>/

Test	Symbol	Test conditions		Limits		Unit
		<u>2</u> / Min Typ		Max		
Power requirements						
V_{DD}		All digital inputs at 0 or V _{DD} , DAC active excludes load current	4.5		5.5	V
I _{DD} (normal mode) <u>6</u> /		$V_{IH} = V_{DD}$ and $V_{IL} = GND$				
$V_{DD} = 4.5 \text{ V to } 5.5 \text{ V}$		Internal reference off		1.3	1.8	mA
$V_{DD} = 4.5 \text{ V to } 5.5 \text{ V}$		Internal reference on		2	2.6	mA
IDD (All power down modes) 7/						
$V_{DD} = 4.5 \text{ V to } 5.5 \text{ V}$		$V_{IH} = V_{DD}$ and $V_{IL} = GND$		0.4	1	μΑ

Test	Symbol	Test conditions		Limits		Unit
		<u>8</u> /	Min	Тур	Max	
AC characteristics						
Output voltage settling time		1/4 to 3/4 scale settling to ±2 LSB		6	10	μs
Slew rate				1.5		V/µs
Digital to Analog glitch impulse		1 LSB change around major carry , see FIGURE 8		4		nV-sec
Digital feedthrough				0.1		
Reference feedthrough		V _{REF} = 2 V ±0.1 V p-p, frequency = 10 Hz to 20 MHz		-90		dB
Digital crosstalk				0.5		nV-sec
Analog crosstalk				2.5		
DAC to DAC crosstalk				3		
Multiplying bandwidth		V _{REF} = 2 V ±0.2 V p-p		340		kHz
Total harmonic distortion		V _{REF} = 2 V ±0.1 V p-p, frequency = 10 kHz		-80		dB
Output Noise spectral density		DAC code = 0x8400, 1 kHz		120		nV/√Hz
Output Noise spectral density		DAC code = 0x8400, 10 kHz		100		
Output noise		0.1 Hz to 10 Hz		15		μV p-p

See footnote at end of table.

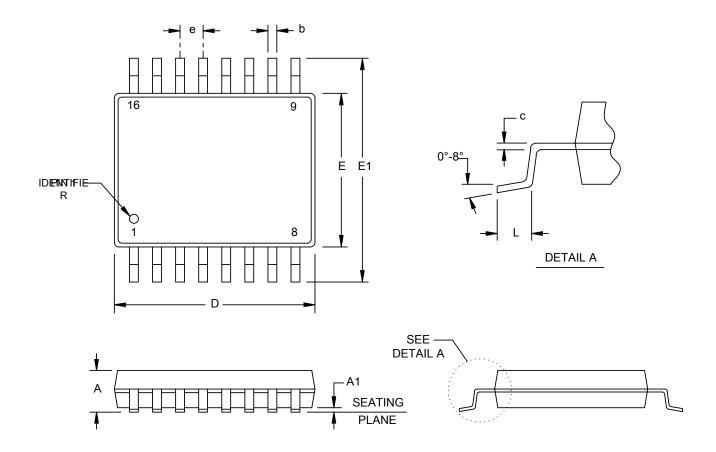

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12643
		REV	PAGE 6

TABLE I. Electrical performance characteristics - Continued. 1/

Test	Symbol	Test conditions	Limits			Unit
		<u>9</u> /	Min	Тур	Max	
Timing characteristics						
SCLK cycle time	t ₁		20			ns
SCLK high time	t ₂		8			
SCLK low time	t ₃		8			
SYNC to SCLK falling edge setup time	t ₄		13			
Data setup time	t ₅		4			
Data hold time	t ₆		4			
SCLK falling edge to SYNC rising edge	t ₇		0			
Minimum SYNC high time	t ₈		15			
SYNC rising edge to SCLK fall ignore	t ₉		13			
SCLK falling edge to SYNC fall ignore	t ₁₀		0			
LDAC pulse width low	t ₁₁		10			
SCLK falling edge to LDAC rising edge	t ₁₂		15			
CLR pulse width low	t ₁₃		5			
SCLK falling edge to LDAC falling edge	t ₁₄		0			
CLR pulse activation time	t ₁₅			300		

- 1/ Testing and other quality control techniques are used to the extent deemed necessary to assure product performance over the specified temperature range. Product may not necessarily be tested across the full temperature range and all parameters may not necessarily be tested. In the absence of specific parametric testing, product performance is assured by characterization and/or
- <u>2</u>/ $V_{DD} = 1.5 \text{ V}$ to 5.5 V, $R_L = 2 \text{ k}\Omega$ to GND, $C_L = 200 \text{ pF}$ to GND, $V_{REFIN} = V_{DD}$. All specifications T_{MIN} to T_{MAX} , unless otherwise noted. Temperature range $-55^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$, Typical at $+25^{\circ}\text{C}$.
- Linearity calculated using a reduced code range of this device (Code 512 to 65,024). Output unloaded.
- Guaranteed monotonic by design.
- Guaranteed by design, and characterization, not production tested.
- Interface inactive. All DACs active. DAC outputs unloaded.
- All eight DACs powered down.
- 3/ 4/ 5/ 6/ 7/ 8/ $V_{DD} = 2.7 \text{ V}$ to 5.5 V, $R_L = 2 \text{ k}\Omega$ to GND, $C_L = 200 \text{ pF}$ to GND, $V_{REFIN} = V_{DD}$. All specifications T_{MIN} to T_{MAX} , unless otherwise noted. Temperature range $-55^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$, Typical at $+25^{\circ}\text{C}$.
- <u>9</u>/ All inputs signal are specified with tr = tf = 1 ns/V (10% to 90% of V_{DD}) and timed from a voltage level of (V_{IL} + V_{IH})/2. See FIGURE 9. $V_{DD} = 2.7 \text{ V}$ to 5.5 V. All specifications T_{MIN} to T_{MAX} , unless otherwise noted.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12643
		REV	PAGE 7

Dimensions					
Symbol	Millimeters		Symbol	Milli	meters
	Min	Max		Min	Max
Α		1.20	Е	4.30	4.50
A1	0.05	0.15	E1	6.40	0 BSC
b	0.19	0.30	е	0.6	5 BSC
С	0.09	0.20	L	0.45	0.75
D	4.90	5.10			

NOTES:

- All linear dimensions are in millimeters.
 Falls within JEDEC MO-153-AB.

FIGURE 1. Case outline.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12643
		REV	PAGE 8

	Case outline X				
Terminal number	Terminal symbol	Terminal number	Terminal symbol		
1	LDAC	16	SCLK		
2	SYNC	15	DIN		
3	V_{DD}	14	GND		
4	$V_{OUT}A$	13	$V_{OUT}B$		
5	V _{OUT} C	12	$V_{OUT}D$		
6	$V_{OUT}E$	11	$V_{OUT}F$		
7	V _{OUT} G	10	$V_{OUT}H$		
8	V _{REFIN} /V _{REFOUT}	9	$\overline{\text{CLR}}$		

FIGURE 2. <u>Terminal connections</u>.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12643
		REV	PAGE 9

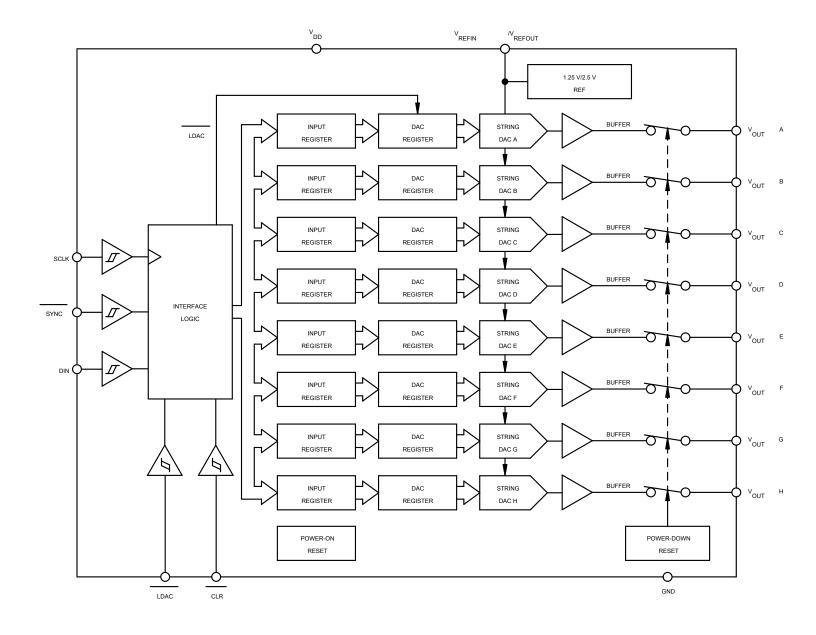


FIGURE 3. Functional block diagram.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12643
		REV	PAGE 10

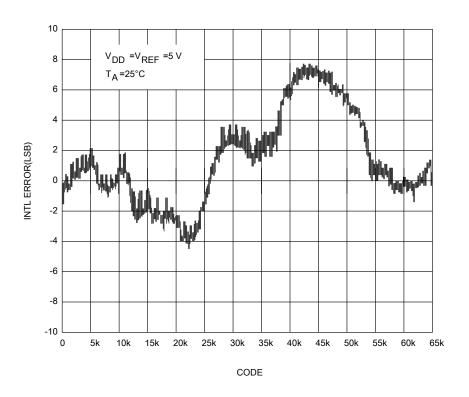


FIGURE 4. INL - External reference.

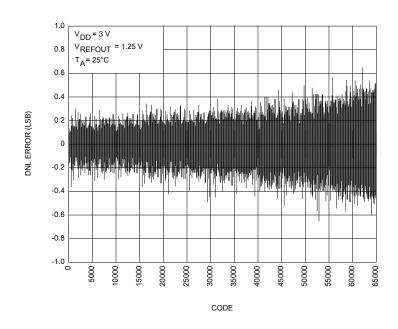


FIGURE 5. DNL.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12643
		REV	PAGE 11

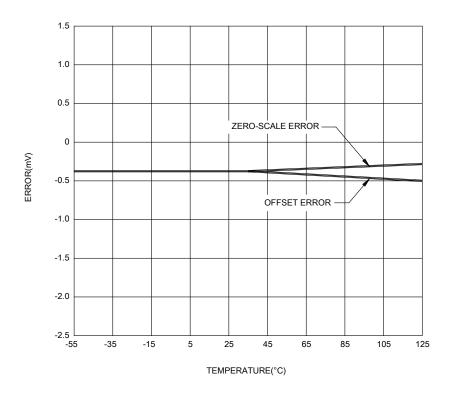


FIGURE 6. Zero scale error and Offset error vs Temperature.

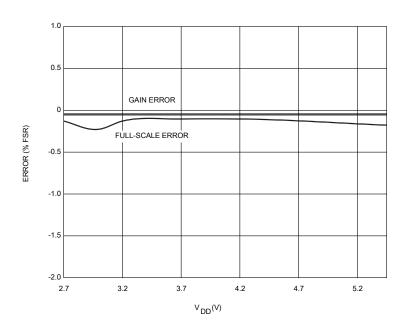


FIGURE 7. Gain error and Full scale error vs Supply voltage.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12643
		REV	PAGE 12

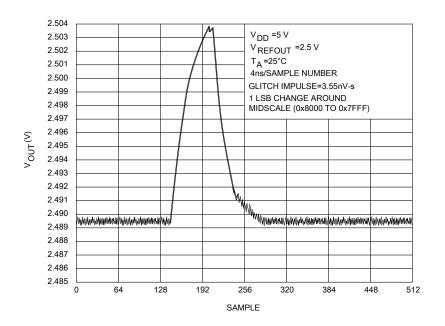
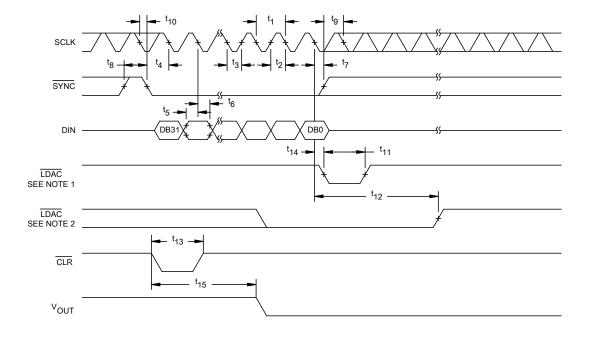



FIGURE 8. Digital to Analog glitch impulse (negative).

NOTES:

- 1. Asynchronous $\overline{\text{LDAC}}$ update mode.
- 2. Synchronous \overline{LDAC} update mode.

FIGURE 9. Serial write operation.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12643
		REV	PAGE 13

4. VERIFICATION

4.1 <u>Product assurance requirements</u>. The manufacturer is responsible for performing all inspection and test requirements as indicated in their internal documentation. Such procedures should include proper handling of electrostatic sensitive devices, classification, packaging, and labeling of moisture sensitive devices, as applicable.

5. PREPARATION FOR DELIVERY

- 5.1 <u>Packaging</u>. Preservation, packaging, labeling, and marking shall be in accordance with the manufacturer's standard commercial practices for electrostatic discharge sensitive devices.
 - 6. NOTES
 - 6.1 ESDS. Devices are electrostatic discharge sensitive and are classified as ESDS class 1 minimum.
- 6.2 <u>Configuration control</u>. The data contained herein is based on the salient characteristics of the device manufacturer's data book. The device manufacturer reserves the right to make changes without notice. This drawing will be modified as changes are provided.
- 6.3 <u>Suggested source(s) of supply</u>. Identification of the suggested source(s) of supply herein is not to be construed as a guarantee of present or continued availability as a source of supply for the item. DLA Land and Maritime maintains an online database of all current sources of supply at http://www.landandmaritime.dla.mil/Programs/Smcr/.

Vendor item drawing administrative control number <u>1</u> /	Device manufacturer CAGE code	Vendor part number
V62/12643-01XB	24355	AD5668SRU-EP-1RL7

1/ The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation.

<u>CAGE code</u> <u>Source of supply</u>

24355 Analog Devices 1 Technology Way

P.O. Box 9106 Norwood, MA 02062-9106

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12643
		REV	PAGE 14